COMMODITY DERIVATIVE MARKETS IN INDIA: ISSUES AND CONCERNS

Ms. Shalini H. S.*

Dr. R. Duraipandian**

Abstract:

Derivatives as a risk management tool have existed in India for more than a century. But the testing times have come now when the global economies are removing trade barriers gradually to facilitate trade so that massive increase in demand can be handled and the uncertainties in supply is managed in an organized manner. India now enjoys world ranking with respect to trading volume in certain commodities like Silver, Gold, Copper, Guar Seed etc. Nevertheless, the functioning has been distorted due to lack of understanding of the dynamic nature of the markets. With this enhanced role there is a need to deliberate on the issues of further research in the area so as to promote the growth and development of the market.

This study analyses the market behavior and price discovery in Indian Agriculture Commodity Markets. Commodity future trading was permitted in 2003. The commodity derivatives market in India has witnessed a phenomenal growth. The functioning of future market came under scrutiny during 2008-2009 due to price rise and the role of futures market in stabilizing spot prices was widely studied.

The study considered average monthly spot and future prices of nine agriculture commodities viz. cardamom, chana, crude palm oil, jute, mentha oil, potato, rubber, soybean oil and wheat trading on MCX and NCDEX during 20012-2013. Granger causality test have been used to test the price discovery i.e., the effect of future market on spot market and vice-versa. The market behavior was studied with the help of backwardation and contango.

Keywords: Commodity Derivatives, India, Commodity Futures, Price Discovery.

_

^{*} Assistant Professor, Department of MBA, Surana College-PG Department, Bangalore, India

^{**} Professor and Head of the Department, Department of MBA, PESIT, Bangalore-South Campus, India

February 2014

Volume 4, Issue 2

ISSN: 2249-0558

Introduction:

Commodity markets have existed for centuries around the world. Cash transactions were most common but sometimes forward agreements were also made, for example forward agreements related to rice markets in seventeenth century in Japan; however most scholars agree that forward agreements date back much further in time. Forward agreements gradually gave way to futures contracts when the first organized grain futures trading in U.S. began in places such as NewYork city and Buffalo city.

According to V. Shunmugam, Chief Economist at the Multi Commodity Exchange of India Ltd., commodity futures help policy makers take better preventive measures by indicating price raises beforehand. Apart from the basic functions of price discovery and price risk management, futures contracts have a number of other benefits like providing liquidity, bringing transparency and controlling black marketing. Futures contracts can easily be converted into cash, i.e. they are liquid. By buying or selling the contract in order to make profits, speculators provide the capital required for ensuring liquidity in the market.

Futures prices indicate democratically observed price expectations at future dates. These prices if efficiently determined, disseminated and accessible to all concerned - can pave the way for optimal decision making and resource allocations. If farmer gets advance information about the price of the produce that is likely to prevail at the time of harvest he can plan his crop and investment accordingly.

The other justification for opening up and rejuvenating commodities futures markets in India during the beginning of the current millennium has been to create infrastructure which will help farmers to access the market as well-informed players. Price discovery and price risk mitigation are the main objectives of commodity futures markets, which enables the farmers to take rational decisions about cropping and marketing of their produce to increase their farm income. This creates incentives and resources for investment in agricultural operations to improve productivity. The National Agricultural Policy 2000 (NAP), sought to "enlarge the coverage of futures markets to minimize the wide fluctuations in commodity prices as also for hedging their risk". The Endeavour ought to be to extend futures trade to all agri-commodities in course of time. The Guru Committee (2001) emphasized the role of futures trading for price risk management and marketing of agricultural produce.

Evolution Of Commodity Futures:

It is believed that commodity futures have existed in India for thousands of years. Kautilya's Arthashastra alludes to market operations similar to modern futures markets. However, organized trading in commodity futures in India commenced in the latter part of the 19thcentury at Bombay Cotton Trade Association Ltd. (established in 1875). The number of commodity markets in the pre-independence era was limited, and there were no uniform guidelines or regulations. The legal framework for organizing forward trading and the recognition of Exchanges was only provided after the adoption of the Constitution by a central legislation called Forward Contracts (Regulation) Act 1952.

ISSN: 2249-0558

Through a notification issued on 27 June 1969, by exercising the powers conferred upon the Central Government by the Securities Contracts Regulation Act 1956, forward trade was prohibited in a large number of commodities, leaving only 7 commodities open for forward trade. The decline in traded volumes on stock markets led to the evolution of an informal system of forward trading by the Bombay Stock Exchange in 1972, but this created payment crises quite often. In 1994, the Kabra Committee recommended the opening up of futures trading in 17 commodities, excluding wheat, pulses, non-basmati, rice, tea, coffee, dry chilli, maize, vanaspati and sugar.

After the Securities Laws (Amendment) Bill was passed in 1999, the Central Government lifted the prohibition on forward trading in securities on 1 March, 2000. The National Multi Commodity Exchange (NMCE) was the first exchange to be granted permanent recognition by the Government, where futures trading commenced on 26 November, 2002. The Multi Commodity Exchange of India (MCX) was established in November 2003 and the National Commodity and Derivatives Exchange Limited (NCDEX) commenced operations in December 2003. Today, futures trading are permissible in 95 commodities in India. There are 25 recognized futures exchanges with more than 3000 registered members. Trading platforms can be accessed through 20,000 terminals spread over 800 towns/cities.

In terms of value of trade, agricultural commodities constituted the largest commodity group in the futures market till 2005-06. Since 2006-07, bullion and metals has taken this place. Between April 2007 and January 2008, agriculture futures amounted to Rs.7.34 lakh crore, 23.22 per cent of all commodity futures. The total value of trade of the Indian Commodity Futures Market during the year 2010-11 stood at Rs. 119.49 lakh crore. The Market registered a growth of 54% during the year, as compared to the value of trade of Rs. 77.65 lakh crore during 2009-10. The value of agriculture commodities traded in the Commodity Exchanges stood at Rs. 14.56 lakh crore growing at a rate of 20% over the previous year. The top five commodities traded in the Futures Market during 2010-11 were Silver, Gold, Crude oil, Copper & Nickel. The top five agri commodities traded in the futures market were Soya oil, Guar seed, Chana, Rape/Mustard seed and Soya bean seed.

Literature Review:

The literature on price discovery is extensive. Many studies are based on the Garbade-Silber framework, along with Granger Causality, Co integration, and Error Correction Models to determine the relationship between futures and cash prices. An attempt has been made to review the existing literature on the concerned topic based on the nature of asset considered in the study. Garbade and Silber (1983) examined the characteristics of price movements in spot market and futures market for storable commodities and found that in general futures contract do not provide a perfect risk transfer facilities in the short time horizon. With respect to price discovery role of futures market evidence was found of information flow from futures to spot market. However, reverse information flow from cash market to futures market was also observed. They also found that market size and liquidity played a positive role in the price discovery function.

Oellermann and Farris (1985) investigated lead lag relation between change in futures and spot price for live beef cattle between 1966 and 1982. The futures price led spot price during nearly every sub period analyzed. Based on Granger causality test for various sub samples of their data, they conclude that change in live cattle futures price led change in live cattle spot price. They also found that the spot market responded to change in futures price within one trading day. The authors conclude that futures market was the centre of price discovery for live cattle. They suggest that a likely explanation for the results is that the futures market serves as a focal point for information assimilation. They conclude that the cattle futures market contributes towards a more efficient price discovery process in the underlying spot market for live beef cattle.

Yang et al. (2001) attempted to study price discovery performance of future market for storable and non storable commodities. They found that asset storability does not affect the price discovery function; although it may bias futures market estimates. They conclude that futures markets can be used as a price discovery tool in both types of markets.

Thomas and Karande (2001) examined efficiency of the castor-seed futures markets in India. The examination included identifying the flow of information between futures and spot prices across two different markets.

Kumar and Sunil (2004) investigated the price discovery in six Indian commodity exchanges for five commodities. For their study they have used the daily futures and comparable ready price and also engaged the ratio of standard deviations of spot and future rates for empirical testing of ability of futures markets to incorporate information efficiently. Besides, the study has empirically analyzed the efficiency of spot and future markets by employing the Johansen Co integration Technique. They found that inability of future market to fully incorporate information and confirmed inefficiency of future market. However, the authors concluded that the Indian agricultural commodities future markets are not yet mature and efficient.

Sahi (2006) studied the impact of introducing future contracts on the volatility of the underlying commodities in India. He found that unexpected increase in future activity in terms of rise in volumes and open interest has caused increase in cash price volatilities, suggesting that futures trading had a destabilizing effect on spot price commodities.

Iyer and Mehta (2007) found the cash market for two commodities (chana and copper) to be a pure satellite of the futures market in the pre-contract expiration weeks, and for four commodities (chana, copper, gold and rubber) in the expiration weeks.

Nath and Lingareddy (2007) in their study have attempted to explore the effect of introducing futures trading on the spot prices of pulses in India. Favoring the destabilization effect of futures contract, their study found that volatilities of urad, gram and wheat prices were high during post-futures period than that in the pre-futures period as well as after the ban of futures contract.

Sen and Paul (2010) have clearly suggested that future trading in agricultural goods and especially in food items has neither resulted in price discovery nor less of volatility in food

ISSN: 2249-0558

prices. They observed a steep increase in spot prices for major food items along with a granger causal link from future to spot prices for commodities on which futures are traded.

Objectives and methodology:

The sample used in the study consists of nine agriculture commodities which are actively traded on NCDEX in the study period of 1st April 2012 to 31st March 2013, selected according to the availability of data. The data consisted of the monthly average of closing spot prices and future prices of each of the sample commodities, which was collected from NCDEX website and other commodity database.

The market behavior was studied with the help of backwardation and contango. Contango refers to the percentage of times, future prices are higher than spot prices and backwardation refers to the percentage of times spot prices are higher than future prices.

With the help of data collected the Granger causality test have been used to test the price discovery i.e., the effect of futures market on the spot markets and vice-versa. Granger causality (or "G-causality") was developed in 1960s and has been widely used in economics since the 1960s. The granger causality is a statistical hypothesis test for determining whether one time series is useful in forecasting others. Granger causality measures whether one thing happens before another thing and helps predict it. In the Granger-sense x is a cause of y if it is useful in forecasting y1.

Conceptually, the idea has several components:

- Temporality: Only past values of X can "cause" Y.
- Exogeneity: Sims (1972) points out that a necessary condition for X to be exogenous of Y is that X fails to Granger-cause Y.
- Independence: Similarly, variables X and Y are only independent if both fail to Granger-cause the other.

In Granger Causality Method, two models are estimated, a unrestricted model and a restricted model. A simple F test is used to determine if the added variable in the unrestricted model results in significantly smaller sum of squared residuals.

P-values from this F test are reported rather than the F statistic itself.

The Unrestricted Model: $\Delta St = \propto +\beta \Delta f t - 1 + \gamma \Delta St - 1 + et$

The Restricted model: $\Delta St = \propto + \gamma \Delta St - 1 + et$

If, by adding the change in futures price as an explanatory variable, the sum of squared errors is significantly smaller than in the restricted model, then we conclude that changes in futures position lead changes in spot price.

A second set of equations is also estimated, but in these the change in futures price is the dependent variable and change in spot price as the added independent variable in the unrestricted model. From these, we can test if a change in spot price leads a change in futures price.

ISSN: 2249-0558

Results and Discussions:

Cardamom prices were also found to show a mixed pattern, with equal incidence of contango and backwardation, with no significant difference between spot and futures prices on average. In terms of price discovery, there was significant effect of futures prices on spot prices.

Chana prices showed a prevalent pattern of contango (58.33%), with spot prices significantly lower than futures prices. In terms of price discovery, there was significant effect of futures prices on spot prices.

Crude palm oil prices were also found to show a mixed pattern, with equal incidence of contango and backwardation (50%), with no significant difference between spot and futures prices on average. In terms of price discovery, there was significant effect of futures prices on spot prices.

Jute prices were found to show backwardation (58.33%), with spot prices significantly higher than futures prices. In terms of price discovery, it was found that there was no significant effect of futures prices on spot prices and of spot prices on futures prices.

Mentha oil prices were found to exhibit chronic backwardation, both with high incidence of backwardation (91.67%). In terms of price discovery, it showed the same result as of jute. It was found that there was no significant effect of futures prices on spot prices and of spot prices on futures prices.

Potato prices were also found to show a mixed pattern, with equal incidence of contango and backwardation (50%), with no significant difference between spot and futures prices on average. In terms of price discovery, there was significant effect of futures prices on spot prices.

Rubber prices showed a highly prevalent pattern of contango (91.67%), with spot prices significantly lower than futures prices. In terms of price discovery, there was significant effect of futures prices on spot prices.

Soyabean oil prices showed a prevalent pattern of contango (58.33%), with spot prices significantly lower than futures prices. In terms of price discovery, there was significant effect of futures prices on spot prices.

Wheat prices were also found to show a mixed pattern, with equal incidence of contango and backwardation, with no significant difference between spot and futures prices on average. In terms of price discovery, there was significant effect of futures prices on spot prices.

In terms of market behaviour, it was found that the commodities that showed contango to a marked extent, with average spot prices significantly lower than average futures prices, were as follows: chana (57.83%), rubber (90.67%), soyabean oil (57.73%), but the difference in their average spot prices and their average futures prices was not statistically significant. On the other hand, the commodities that showed significant backwardation, with average futures prices significantly lower than average spot prices, were as follows:- jute (57.33%),mentha oil (91.63%). It was found that some commodities, viz. crude palm oil, wheat, potato, cardamom showed mixed tendencies of contango and backwardation, with no significant difference in average spot prices and average futures prices.

February 2014

Volume 4, Issue 2

ISSN: 2249-0558

Conclusion:

As majority of Indian investors are not aware of organized commodity market; their perception about is of risky to very risky investment. Many of them have wrong impression about commodity market in their minds. It makes them specious towards commodity market. Concerned authorities have to take initiative to make commodity trading process easy and simple. Along with Government efforts, NGO" s should come forward to educate the people about commodity markets and to encourage them to invest in to it. There is no doubt that in near future commodity market will become Hot spot for Indian farmers rather than spot market. And producers, traders as well as consumers will be benefited from it. But for this to happen one has to take initiative to standardize and popularize the Commodity Market.

There are some limitations inherent in the present study. The study was limited to the period from 1st April 2012 to 31st March 2013. Further, the number of commodities was limited to only nine from only one commodity exchange and some important commodities could not be taken as data was not sufficiently available for them. Finally, data availability was a major issue; the data that was available was in some cases recorded once, and in other cases recorded twice daily. Therefore, only the prices which were nearest to the closing time were chosen.

The price discovery mechanism is quite effective for most commodities, but may not be very effective for some commodities. In particular, causality in commodities markets can be used to either hedge or speculate price movements: if changes in spot prices drive changes in futures prices, efficient hedging strategies can be formulated; whereas if changes in futures prices drive changes in spot prices, efficient speculation strategies can be formulated. Further, causality can be used in forecasting commodity spot and futures prices.

Several natural processes such as seasonal cycles based on harvests, monsoons, depressions, and other weather events would also be expected to have an impact on price discovery in commodity markets; this is another area that needs to be studied. The asset storability also plays an important role in price discovery. This factor can also be considered for further study in this area.

ISSN: 2249-0558

References:

Abhijit Sen(2008), 'Report of the Expert Committee To Study the Impact of Futures Trading on Agriculture Commodity Prices', submitted to Ministry of Consumer Affairs, Food & Public Distribution Government of India.

Ahuja, N. L. (2006); Commodity Derivatives Market in India: Development, Regulation and Future Prospects; International Research Journal of Finance and Economics; Issue 2

Bose, S (2008); Commodity Futures Market in India - A Study of Trends in the Notional Multi-Commodity Indices; ICRA Bulletin of Money and Finance

Chaihetphon P., Pavabutr P.(2010), Price Discovery in Indian Gold Futures Market, Journal of Economics & Finance, Vol.34(4).

Dhuyvetter K.C., Swanser K., Kastens T., Mintert J., Crosby B.(2008), Improving Feeder Cattle Basis Forecasts, Selected paper for 2008 Western Agricultural Economics Association Meeting, Big Sky, MT.

Elumalai, K, N. Rangasamy, and R.K. Sharma, 2009 "Price Discovery in India" s Agricultural Commodity Futures Markets", Indian Journal of Agricultural Economics, vol. 64, no. 3,pp. 315-23.

Garbade, K, D, Silber, W, L, 1983, "Price movements and price discovery in futures and cash markets", The Review of Economics and Statistics, vol. 65, pp. 289-297

Ghosh, Nilanjan (2010); Role of thin commodity futures market in physical markets price making: An analysis of wheat futures in India in post ban era; Working Paper No.6.

Gurbandini Kaur, Rao D.N(2010) .; Do the spot prices influence the pricing of future contracts? An empirical study of price volatility of future contracts of select agricultural commodities traded on NCDEX; Journal of Management Research, Vol. 10, No. 2, pp. 116-132

G. S. Taylor and Raymond M. Leuthold (1974) The influence of futures trading on cash cattle price variations, Food Research Institute Studies 13 29–35

Holbrook Working (1960) Price effects of futures trading, Food Research Institute Studies 1 3–31

Iyer V., Pillai.A.(2010), Price Discovery and Convergence in Indian Commodities Market, Indian Growth and Development Review, Vol.3 No.1, 53-61

Janet S. Netz (1996); An empirical test of the effect of basis risk on cash market positions, The Journal of Futures Markets 16(3) 289–311

Khalifa Ahmed A.A, Miao Hong, Ramchander S. (2011), Return Distribution and Volatility Forecasting in Metal Futures Market: Evidence from Gold, Silver and Copper, Journal of Futures Market, Vol. 31, No. 1, 55–80.

Lokare, S. M. (2007); Commodity Derivatives and Price Risk Management: An Empirical Anecdote; Reserve Bank of India Occasional Papers, Vol. 28, No. 2

Maniar.H.M.,Maniyar D.M.,Bhatt Rajesh (2007), Arbitrage Opputunities in Intraday Trading between Futures, Options and Cash Markets-A case study on NSE India, 10th Indian Institute of Capital Markets Conference Paper.

Mark G. Castelino (1992) Hedge effectiveness: basis risk and minimum variance hedging, The

February 2014

Volume 4, Issue 2

ISSN: 2249-0558

Journal of Futures Markets 12(2) 187-201

Mukherjee,KN(2010); Impact of Trading on Indian Agricultural Commodity Market, Research Project at National Institute of Bank Management, http://ssrn.com/abstract=1763910

Nath, G.C, and Lingareddy, T, 2008, "Commodity Derivative Market and its Impact on Spot Market," SSRN Working Paper Series, http://ssrn.com/abstract=1087904

Philip Garcia, Raymond M. Leuthold and Mohamed E. Sarhan (1984) Basis risk: measurement and analysis of basis fluctuations for selected livestock markets, American Journal of Agricultural Economics 66(4), 499–504

Philip Garcia and Dwight R. Sanders (1996) Ex ante basis risk in the live hog futures contract: has hedgers' risk increased?, The Journal of Futures Markets 16(4), 421–40

R.Salvadi, P.Ramasundaram, 2008 "Whether Commodity Futures Market in Agriculture is Efficient in Price Discovery?-An Econometric Analysis" Agriculture Economic Research Review, vol. 21, pp. 337-34.

Sharma, G. and Mahendru. M, 2010, "Impact of macroeconomic variables on stock prices in India". Global Journal of Management and Business Research, Vol. 10, no. 1, pp 19-26

Srinivasan, Deo (2009), The Temporal Lead Lag and Causality between Spot and Futures Markets: Evidence from Multi Commodity Exchange of India, International Review of Applied Financial Issues and Economics, Vol. 1, No. 1, 2009

S. Jackline, Malabika Deo (2011), Lead Lag Relationship between Futures and Spot Prices, Journal of Economics and International Finance, Vol. 3(7), 424-427

UNCTAD Trade & Development Report (2011), by the secretariat of the United Nations Conference on Trade and Development, New York and Geneva.

Vipul (2005), Temporal variations in futures mispricing, Vikalpa, 30(4)

Vipul (2008), Mispricing, Volume, Volatility and Open Interest: Evidence from Indian Futures Market, Journal of Emerging Market Finance, 7: 3,263–92